
FAIL-SAFE, 500KBPS, RS-485 / RS-422 TRANSCEIVERS WITH ±12KV ESD-PROTECTED

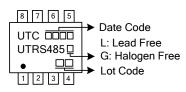
DESCRIPTION

The UTC **UTRS485** is a half-duplex transceiver designed for RS-485 data bus network, which contains one transmitter and one receiver. The UTC **UTRS485** features a fail-safe receiver, which guarantees the receiver to output high when the receiver inputs are open.

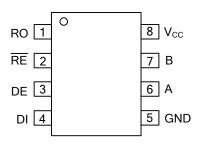
The UTC **UTRS485** also features a hot-swap glitch free protection circuits which guarantee outputs of both the transmitter and the receiver in a high impedance state during the power up period. So that the large short current from power to ground will be disable by glitch free function, which will save the power and enhance the efficiency of the power up.

The UTC **UTRS485** is optimized for signal rates up to 500kbps with differential voltage of 2.3V. The UTC **UTRS485** also has the thermal shutdown function when the temperature is over 150° C and the protection of the current limitation in the transmitter to protect the itself from the damage by the system-fault conditions during normal operation.

FEATURES


- * Meet the requirements of the EIA/TIA-485 standards.
- * 5.0V single power supply.
- * True fail-safe receiver while maintaining EIA/TIA-485 compatibility.
- * Hot-Swap glitch free protection on control inputs.
- * Up to 32 transceivers on the bus.
- * Driver short circuit current limit.
- * Thermal shutdown for overload protection.

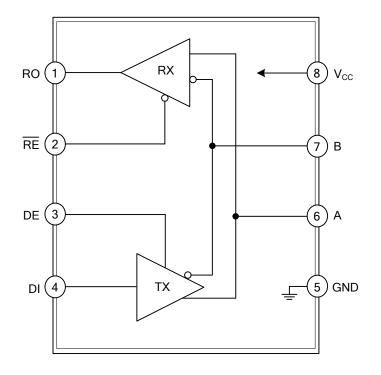
ORDERING INFORMATION


Ordering	Number	Deskara	Docking	
Lead Free	Halogen Free	Package	Packing	
UTRS485L-D08-T	UTRS485G-D08-T	DIP-8	Tube	
UTRS485L-S08-R	UTRS485G-S08-R	SOP-8	Tape Reel	

UTRS485 <u>G-D08-T</u> (1)Packing Type (2)Package Type (3)Green Package	 (1) T: Tube, R: Tape Reel (2) D08: DIP-8, S08: SOP-8 (3) G: Halogen Free and Lead Free, L: Lead Free
--	--

MARKING

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	RO	Receiver output: if A>B by 200mV, RO will be high; if A <b 200mv,="" be="" by="" low.<="" ro="" td="" will="">
2	RE	Receiver output enable. RO is enable when \overline{RE} is low; RO is high impedance when \overline{RE} is high.
3	DE	Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if \overline{RE} is low.
4	DI	Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
5	GND	Ground
6	А	Non-inverting receiver input and non-inverting driver output
7	В	Inverting receiver input and inverting driver output
8	V _{CC}	Positive supply; 4.75V≤V _{CC} ≤5.25V

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{cc}	7.0	V
Control Input Voltage (RE, DE)		V _{cc}	V
Driver Input Voltage (DI)	DI	Vcc	V
Driver Output Voltage (A, B)		±12.5	V
Receiver Input Voltage (A, B)		±12.5	V
Receiver Output Voltage (RO)		Vcc	V
Continuous Dower Dissinction (T. 1708C) DIP-8		800	mW
Continuous Power Dissipation (T _A =+70°C) SOP-8	P _D	625	mW
Operating Temperature Ranges	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-65 ~ +160	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

DC ELECTRICAL CHARACTERISTICS

(V_{CC}=5.0V ±5%, T_A=T_{MIN} to T_{MAX}, unless otherwise noted. (Note 1, 2)

PARAMETER	SYMBOL	TEST CONDITION	١S	MIN	TYP	MAX	UNIT
Differential Driver Output (No Load)	V _{OD1}					5.0	V
Differential Driver Output	V _{OD2}	R=50Ω (RS-422)		2.0			V
(with Load)	V OD2	Fig.1, R=27Ω (RS-485)		1.5		5.0	V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔV_{OD}	Fig.1, R=27Ω or 50Ω				0.2	V
Driver Common-Mode Output Voltage	V _{oc}	Fig.1, R=27Ω or 50Ω				3.0	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔV _{OC}	Fig.1, R=27Ω or 50Ω				0.2	V
Input High Voltage	V _{IH1}	DE, DI, RE		2.0			V
Input Low Voltage	V _{IL1}	DE, DI, RE				0.8	V
Input Current	I _{IN1}	DE, DI, RE				±2.0	μA
Input Current (A, B)	I _{IN2}	DE=0V; V _{CC} =0V or 5.25V	V _{IN} =12V V _{IN} =-7V			1.0 -0.8	mA mA
Receiver Differential Threshold Voltage	V _{TH}	V _{CM} =+2.5V		-0.2		0.2	V
Receiver Input Hysteresis	ΔV_{TH}	V _{CM} =0V			70		mV
Receiver Output High Voltage	V _{OH}	I _O =-4mA, V _{ID} =200mV		3.5			V
Receiver Output Low Voltage	V _{OL}	I _O =4mA, V _{ID} =-200mV				0.5	V
Three-State (High Impedance) Output Current at Receiver	I _{OZR}	0.4V≤V _O ≤ 2.4V				±1.0	μA
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤+12V		12			kΩ
No-Load Supply Current (Note 3)	I _{CC}	$\overline{\text{RE}}$ =0V or V _{CC}	DE=V _{CC} DE=0V		500 300	900 500	μΑ μΑ
Driver Short-Circuit Current, V _O =High	I _{OSD1}	-7V≤V ₀ ≤12V (Note 4)		35		250	mA
Driver Short-Circuit Current, V _o =Low	I _{OSD2}	-7V≤V ₀ ≤12V (Note 4)		35		250	mA
Receiver Short-Circuit Current	I _{OSR}	0V≤V _O ≤V _{CC}		±7		±95	mA

SWITCHING CHARACTERISTICS

$(V_{CC}=+5.0V \pm 5\%, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 1, 2)						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Driver Input to Output	t _{DPLH}	Fig 2 and 5 D = 540 C C 100p 5		50	200	ns
Driver Input to Output	t _{DPHL}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		50	200	ns
Driver Output Skew to Output	t _{DSKEW}	Fig.3 and 5, R _{DIFF} =54Ω, C _{L1} =C _{L2} =100pF		10		ns
Driver Rise or Fall Time	t _{DR} , t _{DF}	Fig.3 and 5, R _{DIFF} =54Ω, C _{L1} =C _{L2} =100pF		15	150	ns
Driver Enable to Output High	t _{DZH}	Fig.4 and 6, C _L =100pF, S2 Closed		80	200	ns
Driver Enable to Output Low	t _{DZL}	Fig.4 and 6, C _L =100pF, S1 Closed		80	200	ns
Driver Disable Time from Low	t _{DLZ}	Fig.4 and 6, C∟=15pF, S1 Closed		80	200	ns
Driver Disable Time from High	t _{DHZ}	Fig.4 and 6, C∟=15pF, S2 Closed		80	200	ns
Receiver Input to Output	t _{RPLH} , t _{RPHL}	Fig.3 and 7, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		500		ns
t _{PLH} - t _{PHL} Differential Receiver Skew	t _{RSKD}	Fig.3 and 7, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		100		ns
Receiver Enable to Output Low	t _{RZL}	Fig.2 and 8, C _{RL} =15pF, S1 Closed		30	200	ns
Receiver Enable to Output High	t _{RZH}	Fig.2 and 8, C _{RL} =15pF, S2 Closed		30	200	ns
Receiver Disable Time from Low		Fig.2 and 8, C _{RL} =15pF, S1 Closed		30	200	ns
Receiver Disable Time from High	t _{RHZ}	Fig.2 and 8, C _{RL} =15pF, S2 Closed		30	200	ns
Maximum Data Rate	f _{MAX}		500			kbps

(V_{CC}=+5.0V \pm 5%, T_A=T_{MIN} to T_{MAX}, unless otherwise noted.) (Note 1, 2)

Notes: 1. All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device ground unless otherwise specified.

2. All typical specifications are given for V_{CC}=5.0V and T_A=+25°C

3. Supply current specification is valid for loaded transmitters when DE=0V

4. Applies to peak current

FUNCTION TABLE

Table 1 TRANSMITTING						
INPUTS			OUTPUTS			
RE	DE	DI	В	А		
Х	1	1	0	1		
Х	1	0	1	0		
0	0	Х	High-Z	High-Z		
1	0	Х	High-Z	High-Z		

Table 2 RECEIVING

	INPUTS		OUTPUTS
RE	DE	A-B	RO
0	0	≥ +0.2V	1
0	0	≤ -0.2V	0
0	0	Inputs open	1
1	0	Х	High-Z

X = Don't care

High-Z = High impedance

TEST CIRCUIT

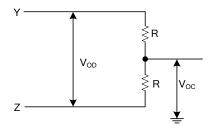


Fig. 1 Driver DC Test Load

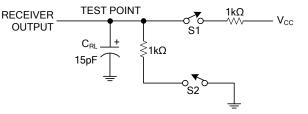


Fig. 2 Receiver Timing Test Load

Fig. 3 Driver/Receiver Timing Test Circuit

Fig. 4 Driver Timing Test Load

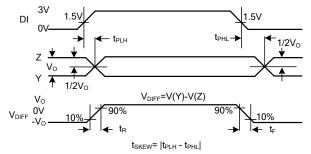


Fig. 5 Driver Propagation Delays

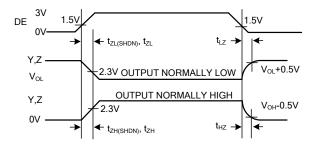


Fig. 6 Driver Enable and Disable Times

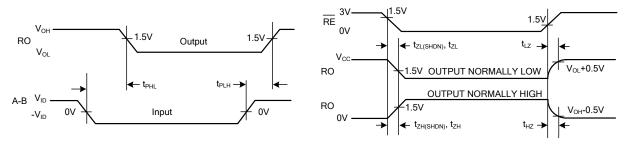
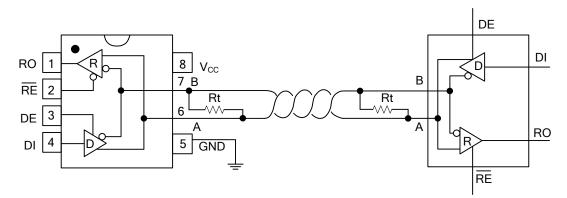



Fig. 7 Receiver Propagation Delays

Fig. 8 Receiver Enable and Disable Times

TYPICAL APPLICATION CIRCUIT

Note: Pin labels Y and Z on timing, test, and waveform diagrams refer to pins A and B when DE is high.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

